Racine$66378$ - traduction vers Anglais
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Racine$66378$ - traduction vers Anglais

CANADIAN ICE HOCKEY PLAYER
Jean-Francois Racine; J.F. Racine; JF Racine

Racine      
n. Racine (dramaturgo francés)
eigenvalue         
  • [[Eigenface]]s as examples of eigenvectors
  • Matrix ''A'' acts by stretching the vector '''x''', not changing its direction, so '''x''' is an eigenvector of ''A''.
  • An extended version, showing all four quadrants]].
  • A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them.
  • PCA of the [[multivariate Gaussian distribution]] centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction. The vectors shown are unit eigenvectors of the (symmetric, positive-semidefinite) [[covariance matrix]] scaled by the square root of the corresponding eigenvalue. Just as in the one-dimensional case, the square root is taken because the [[standard deviation]] is more readily visualized than the [[variance]].
  • measurement]]. The center of each figure is the [[atomic nucleus]], a [[proton]].
  • homothety]])
  • Mode shape of a tuning fork at eigenfrequency 440.09&nbsp;Hz
  • In this [[shear mapping]] the red arrow changes direction, but the blue arrow does not. The blue arrow is an eigenvector of this shear mapping because it does not change direction, and since its length is unchanged, its eigenvalue is 1.
  • alt=Rotation by 50 degrees
  • alt=Horizontal shear mapping
  • 100px
  • alt=Vertical shrink and horizontal stretch of a unit square.
VECTORS THAT MAP TO THEIR SCALAR MULTIPLES, AND THE ASSOCIATED SCALARS
EigenVectors; EigenValue; EigenVector; Eigen Vectors; Eigenvalue; Eigenspace; Eigenvector; Characteristic value; Algebraic multiplicity; Eigenvalues; Eigen value; Characteristic root; Latent root; Proper values; Eigenvalue, eigenvector, and eigenspace; Geometric multiplicity; Latent vector; Eigenvalue (quantum mechanics); Eigen vector; Eigenline; Proper vector; Eigenmode; Principal eigenvector; Eigensystem; Eigen basis; Eigenbasis; Eigenanalysis; Right eigenvector; Left eigenvector; Eigen value problem; Eigenfrequency; Eigenvalue (Matrix); Eigenproblem; Eigenmatrix; Proper value; Eigenvector, eigenvalue and eigenspace; Eigenvector, eigenvalue, and eigenspace; Eigenvectors; Algebraic Multiplicity; Eigenvalue, eigenvector and eigenspace; Spectral properties; Eigenvectors and eigenvalues; Eigen values; Simple eigenvalue; Semisimple eigenvalue; Eigenenergy; Eigenenergies; Racine caractéristique; Draft:Eigencircle; Eigenvector-eigenvalue identity; Eigenvalue problem; Eigen-values and eigenvectors
(n.) = valor representativo, valor característico
Ex: The coefficients of eigenvectors associated with the largest eigenvalue provide the basis for sequencing atoms which are ordered according to the relative magnitudes of the coefficients.
eigenvector         
  • [[Eigenface]]s as examples of eigenvectors
  • Matrix ''A'' acts by stretching the vector '''x''', not changing its direction, so '''x''' is an eigenvector of ''A''.
  • An extended version, showing all four quadrants]].
  • A 2×2 real and symmetric matrix representing a stretching and shearing of the plane. The eigenvectors of the matrix (red lines) are the two special directions such that every point on them will just slide on them.
  • PCA of the [[multivariate Gaussian distribution]] centered at <math>(1, 3)</math> with a standard deviation of 3 in roughly the <math>(0.878, 0.478)</math> direction and of&nbsp;1 in the orthogonal direction. The vectors shown are unit eigenvectors of the (symmetric, positive-semidefinite) [[covariance matrix]] scaled by the square root of the corresponding eigenvalue. Just as in the one-dimensional case, the square root is taken because the [[standard deviation]] is more readily visualized than the [[variance]].
  • measurement]]. The center of each figure is the [[atomic nucleus]], a [[proton]].
  • homothety]])
  • Mode shape of a tuning fork at eigenfrequency 440.09&nbsp;Hz
  • In this [[shear mapping]] the red arrow changes direction, but the blue arrow does not. The blue arrow is an eigenvector of this shear mapping because it does not change direction, and since its length is unchanged, its eigenvalue is 1.
  • alt=Rotation by 50 degrees
  • alt=Horizontal shear mapping
  • 100px
  • alt=Vertical shrink and horizontal stretch of a unit square.
VECTORS THAT MAP TO THEIR SCALAR MULTIPLES, AND THE ASSOCIATED SCALARS
EigenVectors; EigenValue; EigenVector; Eigen Vectors; Eigenvalue; Eigenspace; Eigenvector; Characteristic value; Algebraic multiplicity; Eigenvalues; Eigen value; Characteristic root; Latent root; Proper values; Eigenvalue, eigenvector, and eigenspace; Geometric multiplicity; Latent vector; Eigenvalue (quantum mechanics); Eigen vector; Eigenline; Proper vector; Eigenmode; Principal eigenvector; Eigensystem; Eigen basis; Eigenbasis; Eigenanalysis; Right eigenvector; Left eigenvector; Eigen value problem; Eigenfrequency; Eigenvalue (Matrix); Eigenproblem; Eigenmatrix; Proper value; Eigenvector, eigenvalue and eigenspace; Eigenvector, eigenvalue, and eigenspace; Eigenvectors; Algebraic Multiplicity; Eigenvalue, eigenvector and eigenspace; Spectral properties; Eigenvectors and eigenvalues; Eigen values; Simple eigenvalue; Semisimple eigenvalue; Eigenenergy; Eigenenergies; Racine caractéristique; Draft:Eigencircle; Eigenvector-eigenvalue identity; Eigenvalue problem; Eigen-values and eigenvectors
(n.) = vector representativo, vector característico
Ex: The coefficients of eigenvectors associated with the largest eigenvalue provide the basis for sequencing atoms which are ordered according to the relative magnitudes of the coefficients.

Définition

eigenvector
¦ noun Mathematics & Physics a vector which when operated on by a given operator gives a scalar multiple of itself.

Wikipédia

Jean-François Racine

Jean-François Racine (born April 27, 1982) is a Canadian former professional ice hockey goaltender.